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Digital halftoning technique using a blue-noise mask
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A novel digital halftoning technique, by which the halftoning is achieved by a pixelwise comparison of the gray-
scale image to an array (halftone screen), the blue-noise mask, is presented. This mask is designed so that the
halftone image has blue-noise (high-frequency) characteristics in the frequency domain. The algorithm for the
construction of the blue-noise mask and an algorithm for the construction of binary patterns with the same
first-order but different second-order statistics are presented. Two psychovisual tests in which human sub-
jects rated halftone patterns and images according to various criteria are also described.

1. INTRODUCTION

Many printing devices and displays, such as facsimile ma-
chines and laser printers, are bilevel and therefore are not
capable of reproducing gray-scale images. Gray-scale im-
ages are converted to binary images by using halftone pro-
cesses. The two most widely used halftone processes are
ordered dither and error diffusion. Reviews of halftone
processes can be found in Refs. 1 and 2.

For ordered dither the halftoning is achieved by a simple
pixelwise comparison of the gray-scale image to a periodic
array (halftone screen). Dispersed-dot ordered dither
occurs when the halftone dots are of a fixed size, and
clustered-dot ordered dither occurs when the halftone dots
are of variable sizes. In conventional error diffusion'
every pixel of the gray-scale image is compared with a fixed
threshold, and the resulting binary value is subtracted
from the original value of that pixel. The resulting dif-
ference (error), after being multiplied by appropriate
weights, is diffused into a given size neighborhood.4 Dif-
ferent error-diffusion schemes exist according to the posi-
tion, number, and value of weights in the error filter.'-8

Error-diffusion techniques produce binary patterns with
blue-noise (high-frequency) characteristics. In the image
domain blue-noise characteristics correspond to visually
pleasing, isotropic, uncorrelated patterns, without low-
frequency graininess. Error-diffusion and dispersed-dot
dither methods are suitable for printers that can accu-
rately reproduce single black or white pixels, whereas, if
single-dot reproduction is not possible, clustered-dot
dither is the preferred choice.

In this paper we present a novel digital halftone process
in which the halftoning is achieved by a pixelwise compari-
son of the gray-scale image with an array, the blue-noise
mask. The blue-noise mask is constructed to have spe-
cific first and second-order properties.9 "0 When the mask
is thresholded at any level, for example at A% of the maxi-
mum level, exactly A of every 100 pixels will have a value
greater than the threshold value. In addition, the spatial
distribution of black versus white pixels will be arranged
in such a manner as to form a blue-noise pattern.

In Section 2 the effect of halftoning with ordered dither
and error diffusion in the Fourier domain is described,
and the relationship of these techniques to the blue-noise
mask is presented. In Section 3 we describe the algo-
rithm for the construction of the blue-noise mask. In
Section 4 a power-spectrum-matching algorithm that cre-
ates binary patterns with the same first-order but differ-
ent second-order statistics is described. Section 4 also
describes a visual study in which human subjects rated
binary patterns created with the aforementioned power-
spectrum-matching algorithm according to their isotropy.
The purpose of this study was to determine how varia-
tions in the second-order statistics of a binary pattern
affect its visual appearance. In another visual study, de-
scribed in Section 5, the quality of images halftoned by
using the blue-noise mask and also by using ordered
dither and error diffusion was evaluated by human sub-
jects. This psychovisual test indicates that halftoning
using a blue-noise mask outperforms ordered-dither tech-
niques and gives results comparable with those produced
by halftoning with error diffusion.

2. PRINCIPLES OF THE BLUE-NOISE MASK
AND CONNECTION WITH ERROR
DIFFUSION AND ORDERED DITHER

Ordered-dither and error-diffusion techniques are of par-
ticular importance to the development of the blue-noise
mask, since the blue-noise mask has the structure of an
ordered-dither mask and the blue-noise-producing proper-
ties of error diffusion. Ordered dither and error diffusion
are different in that, when it is applied to uniform (flat)
images, ordered dither produces locally periodic patterns,
whereas error diffusion, in general, produces locally aperi-
odic patterns. Because of the different natures of the
patterns, the Fourier transform is being used to study the
patterns produced by ordered dither," and radially aver-
aged power spectra are used to study the patterns pro-
duced by error diffusion.4 In Subsections 2.A and 2.B we
give a brief overview of the Fourier-domain effects of
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halftoning with error diffusion and ordered dither, and
this overview enables us to establish in Subsection 2.C the
connection between the blue-noise mask and its two par-
ent halftone processes.

A. Ordered Dither
The binary pattern that results after the ordered-dither
array is thresholded at a constant level is called the dot
profile" for that level. Kermisch and Roetling'2 derived
an expression for the Fourier transform of a halftone
image in terms of the Fourier transform of the original
image. Allebach" presented an analysis of the dot profile
for the ordered-dither case and described its relationship
to the Fourier transform of the halftoned image.

A halftone image h(x, y) with size K X K can be writ-
ten in terms of the samples fi, of the input gray-scale
image f(x, y) as"

K K
h(x, y) = > p[i, j, fij]rect[(x - iR)/R]rect(y - jR)/R],

i=o j=O

(1)

where R is the distance between addressable points on the
display and rect(x) is equal to 1 for IxI c 1/2 and 0 other-
wise. The function p(i,j, g) is the dot profile, i.e., the bi-
nary dot shape that represents level g on the display
device. Here and in the remainder of this paper we as-
sume that the gray level g is normalized between 0 and 1.
For example, p(110, 30,0.2) gives the value of the dot pro-
file for gray level g = 0.2 at location (110, 30). The dot
profile is binary and periodic with period M, where M is
the size of the basic period (halftone cell) of the ordered-
dither array. As Allebach showed in Ref. 11, the Fourier
spectrum of an image halftoned by using a mask can be
written as follows:

H(u,v) = sinc(Ru)sinc(Rv)

M
x h e Fmre -- ) vM=-x - x MR

where

nMR

MR

Fmn(UV) = 7 P[m, n, f(x, y)]

X exp[-i27r(ux + vy)]dxdy,
(M/2)-1 (M/2)-1

P(m, n, g) = I2 E ( g)
Al k=-M/2 1=-M/2

( mk + n1X exp -i27 r-

(2)

B. Error Diffusion and Blue Noise
The binary patterns that result from error-diffusion tech-
niques can be modeled as a stationary random process.2

Therefore the power spectrum P(u, v) will be used to study
the properties of these patterns in the frequency domain.
Homogeneous binary patterns, such as the ones produced
by error diffusion, can be approximated for many gray
levels as being radially symmetric in the Fourier trans-
form domain, given the low anisotropy of their power
spectrum as described by Ulichney.2 Thus, instead of
studying two-dimensional (2-D) plots of P(u,v), we use a
simpler one-dimensional (1-D) measure,2 the radially av-
eraged power spectrum. For computing the radially aver-
aged power spectrum, the spectral estimate P(u,v) is
segmented into annuli of width A. The width A is chosen
such that for radial frequency fr it contains the pixels that
satisfy

int(u' + v2)"2 f, (5)

where the into operation denotes integer truncation. The
sample mean of the frequency samples within the annulus
int(u 2 + v2)12 = f, is defined as the radially averaged
power spectrum

(6)Pr(fr) =N() E P(u,v),
N (r int(.

2
+

2
)
1

/
2
=f,

where Nr(fr) is the number of frequency samples within
an annulus.

Ulichney2 was the first to analyze the visually pleasing
properties of error diffusion mathematically and to at-
tribute them to blue noise. Blue noise is high-frequency
noise, and its visually pleasing properties arise from the
fact that the human visual system is more sensitive to low
frequencies than to high frequencies.3

The radially averaged power spectrum of a blue-noise
binary pattern (for level g) is shown in Fig. 1. The cutoff
frequency fg is known as the principal frequency, and it
assumes its highest value for level g = 1/2, since at this
level the populations of black and white dots are equal and
therefore only high-frequency components appear in the
binary image. The dependence of the principal frequency
on the gray level g can be expressed as follows:

forg c 0.5
for g > 0.5(3)

(4)

The function P(m, n, g) is the discrete Fourier transform
of the dot profile p(i, j, g) for a fixed level g. It can also be
regarded as a nonlinear transformation of the original
image f(x, y) for fixed i and j. Thus the spectrum of the
halftone image consists of the displaced spectra of nonlin-
early transformed versions P[m, n, f(x, y)] of the input
gray-scale image."' The terms Fmn(Uv) are referred to as
spectral orders. The Foo(uv) spectral order contains the
spectrum of the input gray-scale image, whereas the other
nonzero spectral orders are responsible for the visible pat-
terns and loss of detail in the halftone image."

5,-
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Radial Frequency

Fig. 1. Radially averaged power spectrum of a blue-noise bi-
nary pattern.
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where R is again the distance between addressable points
on the display.

C. Properties of the Blue-Noise Mask
In this section we examine the properties of the blue-noise
mask and establish its connection with error diffusion
and ordered dither. Our motivation for building this
mask was to combine the advantages of error diffusion
and ordered dither, i.e., to combine the speed of ordered
dither with the high-quality results of error diffusion.
This was done by building our mask as a 2-D single-valued
function, i.e., giving it the structure of an ordered-dither
mask and also giving it the blue-noise-producing proper-
ties of error diffusion. It should be noted here that blue
noise refers to the spectral shape of the resulting halftone
image and not of the mask itself.

More specifically the blue-noise mask is built such that
when it is thresholded at any level, the resulting binary
pattern has the correct first-order statistics and the power
spectrum has blue-noise characteristics. It is important
to note here that the blue-noise mask we constructed is
256 x 256 pixels, which is significantly larger than con-
ventional ordered-dither masks. The blue-noise mask is
built with wraparound properties such that a smaller
blue-noise mask can be used to halftone a larger image by
tiling the mask over an appropriate number of periods.

The blue-noise mask is a 2-D single-valued function,
and it is completely independent of the image to be half-
toned. The only connection required between the blue-
noise mask and the image to be halftoned is that they must
have the same dynamic range (B bits). When the mask is
thresholded at any level g, the resulting binary pattern
p(i, j, g) is called the dot profile for that level, as it is for
the ordered-dither techniques. The value of the dot pro-
file at a particular location (i, j) and for level g is given by

p(ijg) = {i g > (8)

where mj is the corresponding pixel of the blue-noise mask.
Since the blue-noise mask is a 2-D single-valued func-

tion, the dot profiles for the different levels are not in-
dependent. The dependence of the dot profiles can be
written as"

if g2 > gl n (i, j, g) = 1 = p(i, j, g 2) = 1 (9)

This restriction is true for all halftone techniques that are
implemented with a halftone screen. It is this restriction
that is responsible for the superiority of error-diffusion
techniques over conventional ordered dither, since the dot
profiles for error diffusion are independent and can be op-
timum for many gray levels.

An important property of the blue-noise mask is that,
when it is thresholded at any level, the resulting binary
pattern has blue-noise properties. The motivation behind
that particular design of dot profiles can be found in
Eq. (2). According to this equation, the spectrum of any
halftone image consists of the spectrum of the original
image at the Foo(uv) (zeroth) spectral order plus spectra
of distorted versions of the original image at the nonzero
spectral orders. Our goal is to minimize the energy of
the nonzero spectral orders that are close to the zeroth

order because these spectral orders are responsible for
most of the artifacts in the halftone image."

As Eq. (2) shows, energy at spatial-frequency location
(m, n) in P(m, n, g), the discrete Fourier transform of the
dot profile, corresponds to energy in the Fmn (u, v) spectral
order in the Fourier transform H(u, v) of the halftone
image. Therefore by minimizing the low frequencies in
P(m, n, g) we minimize the spectral orders that are close
to the zeroth order and in that way achieve reduction of
the visually annoying artifacts in the halftone image.
Thus the introduction of blue noise in the dot profiles is
intended to reduce the interference from nonzero spectral
orders and to create unstructured patterns that are free
of periodic artifacts.

Blue noise is the connection between the blue-noise
mask and error diffusion. However, the dot profiles of
the blue-noise mask are designed to have a principal fre-
quency different from that of the corresponding patterns
of error diffusion. The scaling factor 1/V'2 is introduced
for purposes that are explained in Sections 3 and 4. Also,
because halftoning by using a blue-noise mask requires
only a simple pixelwise comparison, it is a faster tech-
nique than error diffusion. The speed of error diffusion
depends on the particular implementation; for example,
error diffusion schemes with fixed weights are faster to
implement than are perturbed-weights schemes.

3. CONSTRUCTION OF THE
BLUE-NOISE MASK

In this section we describe the algorithm for the construc-
tion of the blue-noise mask. We refer to this algorithm as
ACBNOM (algorithm for the construction of the blue-noise
mask). As previously, the gray level g is normalized be-
tween 0 and 1, i.e., 0 < g < 1.

The dot profile for each level g, i.e., the binary pattern
p(i, j, g) that results when the blue-noise mask is thresh-
olded at constant level g, is constructed such that it has
blue-noise characteristics in the Fourier domain and cor-
rect first-order statistics in the image domain, i.e., the
mean of the dot profile p(i, j, g) is g.

In building a single-valued function, one constructs the
dot profiles sequentially, i.e., the dot profile for level
g + Ag is built from the dot profile for level g by convert-
ing the value of a given number of pixels. If the next dot
profile corresponds to a higher gray level than does the
current dot profile (upward construction), then during
conversion zeros are replaced by ones; otherwise, ones are
replaced by zeros (downward construction). In what fol-
lows, when we discuss the construction of the dot profiles
we will imply the upward construction unless we state
otherwise. Note that the words "zeros" and "ones" are
used as abbreviations for pixels that contain a zero or a
one, respectively.

For a M x N B-bit mask we design 2 B dot profiles such
that all available gray levels are represented uniquely. As
the dot profile p (i, j, g, + Ag) is constructed from p (i, j, g,),
the number of zeros that will change to ones is equal to
X = (M x N)Ag, where usually Ag = 1/2B. The blue-
noise mask has the property that, when it is thresholded
at any constant gray level g, the resulting binary pattern
is exactly the dot profile we designed for that level. This
is achieved by building the blue-noise mask while con-
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spectrum Pr(fr, gj):

IDr(fr, g + Ag) 2 =P(fr g + Ag)
Pr (fr g1 )

As will also be explained in Section 4, the inverse-filtering
operation is well conditioned because of the unavoidable
low-frequency leakage that prevents Pr(fr, g) from becom-
ing zero. Pr'(fr, g + Ag) is designed such that the princi-
pal frequency is given by

|v/V2R for g C 0.5

fg L / V/R for g > 0.5 (14)

(13)

Fig. 2. Starting pattern for the creation of the blue-noise mask.

structing the dot profiles in such a way that the mask
keeps track of the pixels that change value at each itera-
tion after the implementation of the constraints. More
specifically, the pixel-value conversion that occurs at loca-
tion (i, j) of the current dot profile is spatially encoded in
another array as a decrement or increment of its pixel
value at location (i, j). This array, which performs the
spatial encoding of the dot-profile changes, will be re-
ferred to as the cumulative array. The cumulative array
is a single-valued three-dimensional (3-D) function of spa-
tial location and gray level and will be denoted by c(i, j, g).
When the building of all dot profiles is completed, the
cumulative array becomes the blue-noise mask m(i, j).

We start building the dot profiles from level g = 0.5,
and then we create the dot profiles for levels g > 0.5. The
dot profile for level g = 0.5, p(ij,0.5), is chosen to be a
suitable blue-noise pattern and is shown in Fig. 2. The
cumulative array is also first created at level g = 0.5, and
it is initialized such that when thresholded at gray level
g = 0.5, the resulting binary pattern is the dot profile
p(i, j,0.5) we designed for that level. Therefore we assign
the value 2 B1- to every pixel in the cumulative array that
corresponds to a zero in the dot profile p(i, j, 0.5); other-
wise, we assign the value 2 B-1 - 1:

Vp(i,j,0.5) = 0 => c(ij,0.5) = 2 -

V p(i, j, 0.5) = 1 > c(i, j, 0.5) = 2 1 - 1.

(10)

(11)

Below we describe the algorithm we developed in order
to create the dot profiles of an M N mask for the upward-
construction case (g > 0.5). At the lth iteration this
algorithm creates the dot profile p(i, j, gl + Ag) from
p(i, j, g1) by the following steps:

where g = g + Ag. One reason for introducing the scal-
ing factor K = 1/\/2 is to satisfy design constraints.
Specifically, the blue-noise filter is designed in 1-D space
and then is replicated over all angles to fill the entire 2-D
space. If K = 1, then the highest spatial frequency is
fr = 1/V2, which corresponds to location A in Fig. 3.
Thus designing Dr(fr, g, + Ag) with K = 1 and replicating
it (thin line and corresponding arrow line in Fig. 3) will
cause truncation of the filter at all angles except those
that correspond to points A, B, D, and E in Fig. 3. On the
other hand, if Dr(fr, g, + Ag) is designed with K = 1//,
then the highest spatial frequency is fr = /2 (location C in
Fig. 3) and the replication of Dr(fr, g + Ag) causes no
truncation effects (thick line in Fig. 3). Another reason
for introducing the scaling factor K = i/v¶ will be dis-
cussed in Section 4 and is based on the fact that the in-
troduction of this scaling factor produces patterns with
high isotropy.

4. Produce a 2-D real and even, radially symmetric
filter D(u, v, g, + Ag) by computing the square root of
IDr(fr, gl)l2 and replicating it for all angles in the Fourier
domain such that the entire 2-D Fourier space is filled:

D(u,v,g + Ag) = [Dr(frgj + Ag)12]"/2,

int(U 2
+ V2)1/2 = f (15)

5. Apply the blue-noise filter D(u, v, g + Ag) to the
Fourier transform PF(u, v, g) of the current dot profile
p(ij, g1):

P'(u,v,g + Ag) = PF(u,v,gl) x D(u,v,g, + Ag). (16)

6. Compute the inverse Fourier transform (IFT) of
P'(U'V, g + Ag) to obtain p'(i,j, g + Ag]:

p'(i,j, g, + Ag) = IFT[P'(u,v, g, + Ag)],

A

1. Compute the power spectrum P(u, v, gi) of the dot
profile p(i, j, g1).

2. Compute the radially averaged power spectrum
Pr(fr, g) of P(u, v, g1):

Pr(fr gi) = N P(u,v,g1).
Nr(fr) nt(U2+u2)1/2=f

(12)

3. Design a 1-D blue-noise filter Dr(fr, g + Ag) by di-
viding the desirable radially averaged power spectrum
Pr'(frg + Ag) by the existing radially averaged power

(17)

3 (Sp. Fr. = 0.707)

C (Sp. Fr. = 1/2)

Fig. 3. Replication of the 1-D filter. Sp. Fr., spatial frequency.
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where p'[i, j, g + Ag] is a modified pattern that has the
desired blue-noise characteristics in the Fourier domain
for level g + Ag. However, p'(i, j, g + Ag) is no longer
binary.

7. To enforce the binary state and to implement the
correct first-order statistics for level g + Ag, we form a
difference, or error, array:

e(i, j, g + Ag) = p'(i, j, g + Ag) - p(i, j, gl) . (18)

8. Rank order the errors of all pixels that contain
a zero.

9. Replace (M X N)Ag zeros with ones in p(i,j, gi).
The zeros that will be replaced with ones are those with
the highest error. It is important to note here that before
converting the value of a pixel, we check its neighborhood
mean to ensure that no clumps will be caused by the con-
version. The new pattern that results after the replace-
ment of the zeros, p(i, j, g1 + Ag), is the dot profile for
level g + Ag because it is binary and has the desired
first- and second-order statistics for level g + Ag. The
binary pattern p(i, j, g + Ag) will also be used as the
starting pattern for the next (I + 1) iteration.

10. Update the cumulative array by adding one only to
those pixels that still correspond to a zero in the dot pro-
filep(i,j,g + Ag):

c(i, j, g + Ag) = c(i, j, g) + p(i, j, g + Ag), gŽ ' 0.5,
(19)

where the overbar indicates a logical NOT operation that
changes zeros to ones and vice versa. In this fashion,
when the blue-noise mask is thresholded at constant level
g + Ag, the resulting binary pattern is the dot profile
p(i,j,gl + Ag).

After having built the dot profiles for all levels above
0.5, we proceed to the construction of the levels for which
0 < g < 0.5 (downward construction). The procedure
here is the same as described in the above steps, except
that to construct the next dot profile we replace ones with
zeros. Also, in the case of downward construction the
cumulative array is updated as follows:

c(i, j, g - Ag) = c(i, j, gl) - p(i, j, g - Ag), g ' 0.5.
(20)

After the dot profiles for all gray levels have been con-
structed, the cumulative array contains a uniform distri-
bution of values between 0 and 2B - 1 and becomes the
blue-noise mask. Thus the elements of the blue-noise
mask can be written in terms of the dot profiles" as
follows:

mij = min[g: p(i, j, g) = 1]

in Fig. 6. As expected, the principal frequency peak ap-
pears at a lower frequency for the blue-noise mask than
for the error-diffusion method.

4. BINARY-PATTERN-POWER-SPECTRUM
MATCHING ALGORITHM

A. Creation of the Starting Pattern
As was mentioned in Section 3, the creation of the blue-
noise mask starts at g = 0.5 with a suitable blue-noise
pattern. The starting pattern (g = 0.5) is of great impor-
tance to the overall construction of the blue-noise mask
because the dot profiles for all levels are built from this
pattern and therefore clumps or other types of inhomo-
geneities that might appear in the starting pattern will
also propagate to other levels. An initial approach would
be to use an error-diffusion pattern at g = 0.5 for a start-
ing pattern. However, this would be inappropriate be-
cause of the inhomogeneous nature of error-diffusion
patterns at level g = 0.5.

The starting pattern is created with an algorithm simi-
lar to the one used for the creation of the blue-noise mask.
This algorithm will be called BIPPSMA, which stands for
binary-pattern-power-spectrum matching algorithm. The
main difference between ACBNOM and BIPPSMA is that
at every level BIPPSMA changes the second-order statis-

Fig. 4. Constant gray-scale image (g 0.89) halftoned by using
the blue-noise mask.

(21)

Equation (21) shows that the value of the blue-noise mask
at location (i, j) is equal to gray level g, where g is the first
level whose dot profile has a black-to-white (zero-to-one)
conversion at location (i, j).

As an example, a constant-gray-scale image (g = 0.89)
is halftoned by using the 256 x 256 blue-noise mask and
a perturbed-weights error-diffusion scheme.2 The result-
ing patterns are shown in Figs. 4 and 5, respectively. The
corresponding radially averaged power spectra are shown

Fig. 5. Constant gray-scale image (g = 0.89) halftoned by using
error diffusion.
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I pattern. Otherwise, the algorithm is terminated, and
Blue-noise mask h(i,j) is chosen as the binary pattern that best satisfies
Error diffusion the specified constraints. In a typical run on a 256 X

256 array at level g = 0.87, the algorithm converges, i.e.,
the mean-square-error value is stabilized, in approxi-
mately 20 iterations. The number of pixels that are
replaced at each iteration N, was chosen to be 256. Dif-
ferent values of N, were tried, and for smaller values the
number of iterations increased, whereas for bigger values

a% I' clumping problems occurred.
/,' 't / ,AfApart from providing a starting pattern for ACBNOM,

BIPPSMA is also useful in helping us understand the ef-
fect of different second-order statistics on the visual ap-
pearance of a binary pattern. Indeed, it was the results of
a psychovisual test performed on binary patterns created

0.1 0.2 0.3 0.4 0.5 0.6 0.7 with BIPPSMA that led us to the introduction of a scaling
Radial Frequency (Units of R-) factor K = i/V2 in Eq. (14) for the creation of the dot

urnfil h,-P t1-h .- -_.A m -lR nranQfna11 y will he
Fig. 6. Radially averaged power spectra of a constant gray-scale
image (g = 0.89) halftoned by using the blue-noise mask and
error diffusion.

tics of the binary pattern while preserving the first-order
statistics. BIPPSMA starts with a binary pattern (the
seed pattern) that results from thresholding an M X N
white-noise array at level g = 0.5. The steps of BIPPSMA
for the Ith iteration and input pattern hi(ij) are sum-
marized as follows:

1. Compute the power spectrum P1(u,v) of hl(i,j).
2. Compute the radially averaged power spectrum

Pr (r).
3. Design the 1-D filter: IDlr(fr)12 = Plr'(fr)/PIr(fr).
4. Design the 2-D filter: D(u,v) = (IDmr(fr)12)112.
5. Filter Hl(u,v) [the Fourier transform of hl(i, j)]:

H1'(u,v) = Hl(u,v) X Dl(u,v).
6. Compute the inverse Fourier transform of Hz'(u,v):

hl'(i,j) = IFT[Hj'(u,v)].
7. Form the error array el(i, j) = hl'(i, j) - hi(i, j).
8. Rank order the errors for the zeros and ones.
9. Convert the pairs that have the highest error, and

create hi+(ij).
10. Compute the mean-square error between hl+i(i,j)

and hl'(i, j).

Steps 1-7 in BIPPSMA above are the same as the corre-
sponding steps in ACBNOM. However, in step 8 all pixels
(both zeros and ones) are ranked according to their error,
and then in step 9 the zeros and ones with the highest
errors exchange positions. In this way the second-order
statistics of the binary pattern change with the implemen-
tation of the blue-noise filter in step 3 (the same as in
ACBNOM), whereas the binary state and the mean value
are preserved. Note that in step 3 the principal fre-
quency of the desired radially averaged power spectrum
Plr'(fr) is computed from Eq. (14) for g = 0.5. The algo-
rithm iterates until a mean-square-error criterion (be-
tween the desired and current pattern) is satisfied. This
mean-square error is computed between the binary pat-
tern hl+1(i, j) that results after the pairwise exchange of
zeros and ones and the continuous-tone filtered pattern
hl'(ij). If the mean-square error at the Ith iteration is
smaller than the mean-square error of the previous itera-
tion, then the algorithm repeats with h 1+(i, j) as the input

explained in Section 5, it was found that power-spectrum-
matching algorithms such as BIPPSMA and ACBNOM
create the most homogeneous patterns when a scaling fac-
tor K = 1/\/2 is introduced in the formula for the compu-
tation of the principal frequency.

B. Creation and Comparison of Binary Patterns with the
Same First-Order but Different Second-Order Statistics
In the halftoning literature today the phrase "blue-noise
pattern" implies a binary pattern that is of the form shown
in Fig. 1 and has the following characteristics:

1. In the Fourier domain most of the energy is concen-
trated in the high frequencies, whereas the low frequencies
have negligible energy.2 An important note here is that
the terms "low frequencies" and "high frequencies" are
used in the halftoning literature to denote the relative
positions of the frequencies with respect to the principal-
frequency location, i.e., frequencies below the principal
frequency are termed "low" and frequencies above the
principal frequency are termed "high."

2. In the Fourier domain the principal frequency is lo-
cated at the position that corresponds to the average dis-
tance of the minority pixels in the binary pattern and is
given by Eq. 7.

3. In the image domain the binary pattern is isotropic,
i.e., there are no preferred directions in the distribution of
black and white dots.

However, this definition is somewhat vague because it
does not specify the exact amount of energy that must be
contained in the principal-frequency peak in order for one
to have a blue-noise pattern. Another interesting issue is
how perturbations of the principal-frequency position in
the Fourier transform affect the appearance of the binary
pattern in the image domain. We address these issues
here and examine (a) the strictness of the definition of
the principal frequency as the cutoff frequency given by
Eq. (7) and the effect of a scaling factor introduced into
this equation and (b) the effect of different sizes of the
principal-frequency peak on the visual appearance of the
binary pattern. For the latter purpose we designed with
BIPPSMA binary patterns that had the same first-order
statistics but had spectra that differed in the location,
height, and width of the principal-frequency peak.
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BIPPSMA was applied to binary patterns with dimen-
sions 256 256 at two different constant gray levels,
g, = 0.87 and g2 = 0.95. For both gray levels the starting
pattern was white-noise thresholded at levels gi and g 2 .
We experimented with different variations in the power
spectrum of the desired signal. To examine the signifi-
cance of the principal-frequency location, we introduced a
scaling factor K in Eq. (7) such that

_ fKVg/R for g 0.5
fg t(K\/B/R for g > 0.5

(22)

We experimented with three scaling factors, K1 = 0.543,
K2 = 1/\/2, and K3 = 1. The third scaling factor corre-
sponds to the standard definition of the principal fre-
quency in Eq. (7).

To examine the effect of different principal-frequency
energies on the appearance of the binary patterns in the
image domain, we experimented with different heights
and widths of the principal-frequency peak. Specifically,
we tried two different values for the width of the principal-
frequency peak, 0.015R-1 and 0.0429R-', respectively,
where R is the distance between addressable points in the
spatial domain. For the height we tried the ratios of 1.5,
1.0 (no peak), and 2.5 between the maximum of the
principal-frequency peak and the high-frequency baseline.
This ratio will be referred to as the high-to-low ratio. In
Figs. 7, 8, and 9 we show binary patterns at gray level
g = 0.87 that correspond to scaling factors K = 0.543,
K = 1/, and K = 1, respectively.

It is interesting to compare the spectra of these patterns
(Fig. 10) with the desired spectra for each pattern, shown
in Fig. 11. Note that the dc term is not shown. As can be
seen from Fig. 10, BIPPSMA successfully creates binary
patterns with power spectra that match the desired ones,
with the exception of some low-frequency leakage and
some additional energy at the principal-frequency location
for K = 1. Low-frequency leakage is inevitable when one
uses this particular algorithm, for the following reason:
BIPPSMA replaces continuous, filtered values of hl'(ij)
with binary values in h+ (i, j) according to the error array.
This substitution of binary values for continuous values
can be viewed as a quantization procedure, which classi-
cally is treated as a white-noise process. A degree of low-
frequency leakage is actually a stabilizing feature in
BIPPSMA because in this way we avoid the problem of di-
viding by zero in step 3 (in both BIPPSMA and ACBNOM).

To derive a conclusion about the significance of the
principal-frequency location and the energy of the
principal-frequency peak in the visual appearance of a
binary pattern, we performed a psychovisual test. For
that purpose 15 binary patterns (256 x 256) with differ-
ent locations, heights, and widths of the principal-
frequency peak were created for level gl = 0.87. Also,
nine images with different locations and heights of the
principal-frequency peak were created for g2 = 0.95. We
did not vary the width for g2 = 0.95 because of the small
effect of different widths on the visual appearance of a
binary pattern. The binary patterns were printed at 70
dots/in. (27.6 dots/ci ) on an Apple Laserwriter, and these
patterns were presented in random order to 10 subjects
under identical conditions. The criterion according to
which the binary patterns were rated was isotropy, i.e., the

lack of preferred directions in the distribution of the black
and white dots. It is important to note here that the reso-
lution of 70 dots/in. (27.6 dots/cm) was not chosen for
reasons of printing optimization; on the contrary, our
purpose was to increase the detectability of inhomogenei-
ties in the binary patterns. The viewing distance was
approximately 10 in. (25.4 cm). Our rating scale is a
frequently used scale'4 from 5 (best) to 1 (worst). Our
conclusions based on the psychovisual test results are
as follows:

Fig. 7. Binary pattern (g 0.87) with K 0.543.

Fig. 8. Binary pattern (g = 0.87) with K = 1/V2.

Fig. 9. Binary pattern (g 0.87) with K 1
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that corresponded to scaling factors K = 1 and K =
0.543, whereas different high-to-low ratios had little effect
on the rating of images with the same K.

5. PSYCHOVISUAL TEST

,A I" 1V ',,A. 'In this section we present the results of a psychovisual
test that was performed to assess and compare the quality
of images that were halftoned by using the blue-noise
mask, error diffusion (a perturbed-weights scheme2),
Bayer's dispersed-dot dither, and the 450 classical screen
clustered-dot dither. These techniques were chosen for
comparison with the blue-noise mask because they repre-
sent the three most important halftoning categories and

_____________________________________________ because they rank am ong the best in their respective
0.1 0.2 0.3 0.4 0.5 0.6 0.7 categories.

Radial Frequency (Units of R-') Eleven images of various content were halftoned by
Radially averaged power spectra of binary patterns at using the above techniques, and the resulting images were

17 with K = 0.543 (solid curve), K = 1/V'2 (dashed curve), printed at 150 dots/in. (59.1 dots/cm) on an Apple Laser-
= 1 (dotted curve). writer Plus. As before, the printing resolution was chosen

not for printing optimization reasons but to increase the
visibility of the artifacts introduced by the different

K-0.77 -- halftoning methods. The different types of image in-
Kw 1--- cluded portraits, geometric shapes, natural scenes, and a

medical image. One of these images, halftoned with
the aforementioned techniques, is shown in Figs. 13-16.
Twelve subjects rated the images according to their simi-

Gcc

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Radial Frequency (Units of R-')

Fig. 11. Desired radially averaged power spectra for binary pat-
terns atg = 0.87 with K = 0.543 (solid curve), K = 1/V'2 (dashed
curve), and K = 1 (dotted curve).

1. When a power-spectrum-matching algorithm
(BIPPSMA) was used, the best-rated patterns were those
with K = 1/V¶. Thus the definition of the principal fre-
quency as the cutoff frequency given by Eq. (7) can be
broadened to include a scaling factor K = 1/V. It is
important to note here that the conclusion that patterns
with K = 1/V'/ are rated better than those with K = 1 is
not a general conclusion but is restricted to power-
spectrum-matching algorithms of the type of BIPPSMA
and ACBNOM.

2. Binary patterns with the same location but different
energies of the principal-frequency peak were rated
closely; therefore the size (energy) of the principal-
frequency peak is not important in the visual appearance
of a binary pattern.

The results of the psychovisual test for level g = 0.87 are
shown in Fig. 12. As can be seen from this figure, binary
patterns that corresponded to a scaling factor of K =
1/V received significantly higher rating than patterns

5-~~ * U 

A A A

2-

0 1 . . 3 4 . 6

* K=0.543
* K=0.707
A K=1

Images with Different HLR

Fig. 12. Psychovisual test results (g = 0.87).

Table 1. Rating Scale

Rating Rendition of Original Image

5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 2. Psychovisual Test Results

Halftone Method Mean Opinion Score

Error diffusion 4.3
Blue-noise mask 3.9
Dispersed-dot dither 2.7
Clustered-dot dither 1.6

II
I

11I
11
11
III

11
I
I I

I I.1 , I
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Fig. 13. Gray-scale image halftoned by
mask.

using the blue-noise
Gray-scale image halftoned by using ordered dither.

Gray-scale image halftoned by using ordered dither.

A; .-.'; ..

Fig. 14. Gray-scale image halftoned by using error diffusion.
Fig. 16. Gray-scale image halftoned by using clustered-dot
dither.

T. Mitsa and K. J. Parker



Vol. 9, No. 11/November 1992/J. Opt. Soc. Am. A 1929

larity to the original gray-scale image at a viewing dis-
tance of 10 in. (25.4 cm). The viewers had no a priori
knowledge about the halftone techniques that were used,
and the images were presented to them in a random order
under identical conditions. We used a standard rating
scale from 5 (excellent) to 1 (bad).14 The entire scale is
shown in Table 1. The mean opinion score for each
halftoning method is shown in Table 2.

As can be seen from Table 2, error diffusion was rated
best (4.3) with the blue-noise mask rated slightly
lower (3.9), whereas the dispersed-dot and clustered-dot
dither methods received lower ratings, 2.7 and 1.6, respec-
tively. The blue-noise mask was rated slightly lower than
error diffusion for the following reasons:

1. The blue-noise mask has correlated dot profiles.
This is a disadvantage in the low-contrast areas.

2. The halftones that were created by using the blue-
noise mask appear more grainy than those created by
using error diffusion because of the small, but nonzero,
leakage of low-frequency energy.

3. Error diffusion has intrinsic sharpening properties.
The error-diffusion images appear sharper because of the
edge-enhancement properties of error diffusion.'5

However, error diffusion is not completely free of artifacts.
Texture-shift artifacts can be seen in Fig. 14 (neck area),
and they are due to the dependence of the binary value of a
pixel on the previous binary assignments. The dispersed-
dot and clustered-dot dither methods were rated poorly
because of their periodic artifacts that give an artificial
texture to the halftone images. Another type of artifact
associated with ordered-dither techniques is the Moir6
patterns that occur when the gray-scale image contains
frequencies close to the frequency of the halftoning mask.

6. CONCLUSION

In recent years halftoning has become an essential part in
binary output devices, such as facsimile machines, laser
printers, and desktop-publishing systems. The most
widely used halftone techniques today are ordered dither
and error diffusion, with error diffusion being the pre-
ferred choice for printers that can accurately reproduce
single black and white pixels. In this paper we introduced
digital halftoning using a blue-noise mask, which is a
novel (dispersed-dot) halftone algorithm that combines
the structure of an ordered-dither mask and the blue-
noise-producing properties of error diffusion.

We described the algorithm for the construction of the
blue-noise mask (ACBNOM) and demonstrated how this
algorithm builds the blue-noise mask by creating the bi-
nary patterns for each level and then combining them in a
single-valued function. We also described the algorithm

for the construction of the starting pattern (BIPPSMA).
This algorithm was also used for the construction of bi-
nary patterns with the same first-order but different
second-order statistics. These patterns were rated in a
psychovisual test according to their isotropy, and from the
results of the test it was concluded that the introduction of
a scaling factor K = 1//2 in the computation of the prin-
cipal frequency in power-spectrum-matching algorithms
(such as BIPPSMA and ACBNOM) results in binary pat-
terns with the highest isotropy. To compare the perfor-
mance of the blue-noise mask with other halftone
methods, we performed a psychovisual test in which 11
gray-scale images were halftoned with four halftone tech-
niques, including the blue-noise mask, and then were pre-
sented to 12 subjects for evaluation. According to the
results of the psychovisual test, the blue-noise mask per-
forms significantly better than do ordered-dither tech-
niques, and it gives results comparable with those of
error-diffusion techniques.
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